\(\int (d x)^{5/2} (a+b \arcsin (c x)) \, dx\) [203]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 120 \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\frac {20 b d^2 \sqrt {d x} \sqrt {1-c^2 x^2}}{147 c^3}+\frac {4 b (d x)^{5/2} \sqrt {1-c^2 x^2}}{49 c}+\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {20 b d^{5/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{147 c^{7/2}} \]

[Out]

2/7*(d*x)^(7/2)*(a+b*arcsin(c*x))/d-20/147*b*d^(5/2)*EllipticF(c^(1/2)*(d*x)^(1/2)/d^(1/2),I)/c^(7/2)+4/49*b*(
d*x)^(5/2)*(-c^2*x^2+1)^(1/2)/c+20/147*b*d^2*(d*x)^(1/2)*(-c^2*x^2+1)^(1/2)/c^3

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4723, 327, 335, 227} \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {20 b d^{5/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{147 c^{7/2}}+\frac {4 b \sqrt {1-c^2 x^2} (d x)^{5/2}}{49 c}+\frac {20 b d^2 \sqrt {1-c^2 x^2} \sqrt {d x}}{147 c^3} \]

[In]

Int[(d*x)^(5/2)*(a + b*ArcSin[c*x]),x]

[Out]

(20*b*d^2*Sqrt[d*x]*Sqrt[1 - c^2*x^2])/(147*c^3) + (4*b*(d*x)^(5/2)*Sqrt[1 - c^2*x^2])/(49*c) + (2*(d*x)^(7/2)
*(a + b*ArcSin[c*x]))/(7*d) - (20*b*d^(5/2)*EllipticF[ArcSin[(Sqrt[c]*Sqrt[d*x])/Sqrt[d]], -1])/(147*c^(7/2))

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {(2 b c) \int \frac {(d x)^{7/2}}{\sqrt {1-c^2 x^2}} \, dx}{7 d} \\ & = \frac {4 b (d x)^{5/2} \sqrt {1-c^2 x^2}}{49 c}+\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {(10 b d) \int \frac {(d x)^{3/2}}{\sqrt {1-c^2 x^2}} \, dx}{49 c} \\ & = \frac {20 b d^2 \sqrt {d x} \sqrt {1-c^2 x^2}}{147 c^3}+\frac {4 b (d x)^{5/2} \sqrt {1-c^2 x^2}}{49 c}+\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {\left (10 b d^3\right ) \int \frac {1}{\sqrt {d x} \sqrt {1-c^2 x^2}} \, dx}{147 c^3} \\ & = \frac {20 b d^2 \sqrt {d x} \sqrt {1-c^2 x^2}}{147 c^3}+\frac {4 b (d x)^{5/2} \sqrt {1-c^2 x^2}}{49 c}+\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {\left (20 b d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {c^2 x^4}{d^2}}} \, dx,x,\sqrt {d x}\right )}{147 c^3} \\ & = \frac {20 b d^2 \sqrt {d x} \sqrt {1-c^2 x^2}}{147 c^3}+\frac {4 b (d x)^{5/2} \sqrt {1-c^2 x^2}}{49 c}+\frac {2 (d x)^{7/2} (a+b \arcsin (c x))}{7 d}-\frac {20 b d^{5/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{147 c^{7/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.03 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.83 \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\frac {2 d^2 \sqrt {d x} \left (21 a c^3 x^3+10 b \sqrt {1-c^2 x^2}+6 b c^2 x^2 \sqrt {1-c^2 x^2}+21 b c^3 x^3 \arcsin (c x)-10 b \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},c^2 x^2\right )\right )}{147 c^3} \]

[In]

Integrate[(d*x)^(5/2)*(a + b*ArcSin[c*x]),x]

[Out]

(2*d^2*Sqrt[d*x]*(21*a*c^3*x^3 + 10*b*Sqrt[1 - c^2*x^2] + 6*b*c^2*x^2*Sqrt[1 - c^2*x^2] + 21*b*c^3*x^3*ArcSin[
c*x] - 10*b*Hypergeometric2F1[1/4, 1/2, 5/4, c^2*x^2]))/(147*c^3)

Maple [A] (verified)

Time = 1.27 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.20

method result size
derivativedivides \(\frac {\frac {2 a \left (d x \right )^{\frac {7}{2}}}{7}+2 b \left (\frac {\left (d x \right )^{\frac {7}{2}} \arcsin \left (c x \right )}{7}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {5}{2}} \sqrt {-c^{2} x^{2}+1}}{7 c^{2}}-\frac {5 d^{4} \sqrt {d x}\, \sqrt {-c^{2} x^{2}+1}}{21 c^{4}}+\frac {5 d^{4} \sqrt {-c x +1}\, \sqrt {c x +1}\, \operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )}{21 c^{4} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{7 d}\right )}{d}\) \(144\)
default \(\frac {\frac {2 a \left (d x \right )^{\frac {7}{2}}}{7}+2 b \left (\frac {\left (d x \right )^{\frac {7}{2}} \arcsin \left (c x \right )}{7}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {5}{2}} \sqrt {-c^{2} x^{2}+1}}{7 c^{2}}-\frac {5 d^{4} \sqrt {d x}\, \sqrt {-c^{2} x^{2}+1}}{21 c^{4}}+\frac {5 d^{4} \sqrt {-c x +1}\, \sqrt {c x +1}\, \operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )}{21 c^{4} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{7 d}\right )}{d}\) \(144\)
parts \(\frac {2 a \left (d x \right )^{\frac {7}{2}}}{7 d}+\frac {2 b \left (\frac {\left (d x \right )^{\frac {7}{2}} \arcsin \left (c x \right )}{7}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {5}{2}} \sqrt {-c^{2} x^{2}+1}}{7 c^{2}}-\frac {5 d^{4} \sqrt {d x}\, \sqrt {-c^{2} x^{2}+1}}{21 c^{4}}+\frac {5 d^{4} \sqrt {-c x +1}\, \sqrt {c x +1}\, \operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )}{21 c^{4} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{7 d}\right )}{d}\) \(146\)

[In]

int((d*x)^(5/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

2/d*(1/7*a*(d*x)^(7/2)+b*(1/7*(d*x)^(7/2)*arcsin(c*x)-2/7*c/d*(-1/7/c^2*d^2*(d*x)^(5/2)*(-c^2*x^2+1)^(1/2)-5/2
1/c^4*d^4*(d*x)^(1/2)*(-c^2*x^2+1)^(1/2)+5/21/c^4*d^4/(c/d)^(1/2)*(-c*x+1)^(1/2)*(c*x+1)^(1/2)/(-c^2*x^2+1)^(1
/2)*EllipticF((d*x)^(1/2)*(c/d)^(1/2),I))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.82 \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\frac {2 \, {\left (10 \, \sqrt {-c^{2} d} b d^{2} {\rm weierstrassPInverse}\left (\frac {4}{c^{2}}, 0, x\right ) + {\left (21 \, b c^{5} d^{2} x^{3} \arcsin \left (c x\right ) + 21 \, a c^{5} d^{2} x^{3} + 2 \, {\left (3 \, b c^{4} d^{2} x^{2} + 5 \, b c^{2} d^{2}\right )} \sqrt {-c^{2} x^{2} + 1}\right )} \sqrt {d x}\right )}}{147 \, c^{5}} \]

[In]

integrate((d*x)^(5/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

2/147*(10*sqrt(-c^2*d)*b*d^2*weierstrassPInverse(4/c^2, 0, x) + (21*b*c^5*d^2*x^3*arcsin(c*x) + 21*a*c^5*d^2*x
^3 + 2*(3*b*c^4*d^2*x^2 + 5*b*c^2*d^2)*sqrt(-c^2*x^2 + 1))*sqrt(d*x))/c^5

Sympy [A] (verification not implemented)

Time = 68.12 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.71 \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=a \left (\begin {cases} \frac {2 \left (d x\right )^{\frac {7}{2}}}{7 d} & \text {for}\: d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) - b c \left (\begin {cases} \frac {d^{\frac {5}{2}} x^{\frac {9}{2}} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {c^{2} x^{2} e^{2 i \pi }} \right )}}{7 \Gamma \left (\frac {13}{4}\right )} & \text {for}\: d > -\infty \wedge d < \infty \wedge d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) + b \left (\begin {cases} \frac {2 \left (d x\right )^{\frac {7}{2}}}{7 d} & \text {for}\: d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) \operatorname {asin}{\left (c x \right )} \]

[In]

integrate((d*x)**(5/2)*(a+b*asin(c*x)),x)

[Out]

a*Piecewise((2*(d*x)**(7/2)/(7*d), Ne(d, 0)), (0, True)) - b*c*Piecewise((d**(5/2)*x**(9/2)*gamma(9/4)*hyper((
1/2, 9/4), (13/4,), c**2*x**2*exp_polar(2*I*pi))/(7*gamma(13/4)), (d > -oo) & (d < oo) & Ne(d, 0)), (0, True))
 + b*Piecewise((2*(d*x)**(7/2)/(7*d), Ne(d, 0)), (0, True))*asin(c*x)

Maxima [F]

\[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\int { \left (d x\right )^{\frac {5}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((d*x)^(5/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

2/7*b*d^(5/2)*x^(7/2)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 2/7*(a*d^2*x^(7/2) + 7*b*c*d^2*integrate(1/
7*sqrt(c*x + 1)*sqrt(-c*x + 1)*x^(7/2)/(c^2*x^2 - 1), x))*sqrt(d)

Giac [F]

\[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\int { \left (d x\right )^{\frac {5}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((d*x)^(5/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

integrate((d*x)^(5/2)*(b*arcsin(c*x) + a), x)

Mupad [F(-1)]

Timed out. \[ \int (d x)^{5/2} (a+b \arcsin (c x)) \, dx=\int \left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d\,x\right )}^{5/2} \,d x \]

[In]

int((a + b*asin(c*x))*(d*x)^(5/2),x)

[Out]

int((a + b*asin(c*x))*(d*x)^(5/2), x)